Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation

نویسندگان

  • Jiafeng Xu
  • Karl Henning Halse
چکیده

We introduce a symplectic dual quaternion variational integrator(DQVI) for simulating single rigid body motion in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group variational integrator is used to conserve the geometric structure, energy and momentum of the system during the simulation. The combination of these two becomes the first Lie group variational integrator for rigid body simulation without decoupling translations and rotations. Newton-Raphson method is used to solve the recursive dynamic equation. This method is suitable for real-time rigid body simulations with high precision under large time step. DQVI respects the symplectic structure of the system with excellent long-term conservation of geometry structure, momentum and energy. It also allows the reference point and 6-by-6 inertia matrix to be arbitrarily defined, which is very convenient for a variety of engineering problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Group Variational Integrators for Rigid Body Problems Using Quaternions

Rigid body dynamics on the rotation group have typically been represented in terms of rotation matrices, unit quaternions, or local coordinates, such as Euler angles. Due to the coordinate singularities associated with local coordinate charts, it is common in engineering applications to adopt the unit quaternion representation, and the numerical simulations typically impose the unit length cond...

متن کامل

A Robust Estimator for Almost Global Attitude Feedback Tracking

This article presents a robust and almost global feedback attitude tracking control scheme in conjunction with a robust deterministic estimator that constructs state estimates for feedback. These control and the estimation schemes use the natural and globally unique representation of rigid body attitude provided by rotation matrices. Attitude and angular velocity state estimates are constructed...

متن کامل

High-fidelity numerical simulation of complex dynamics of tethered spacecraft

This paper presents an analytical model and a geometric numerical integrator for a tethered spacecraft model that is composed of two rigid bodies connected by an elastic tether. This high-fidelity model includes important dynamic characteristics of tethered spacecraft in orbit, namely the nonlinear coupling between tether deformations, rigid body rotational dynamics, a reeling mechanism, and or...

متن کامل

Lie-Poisson integrators: A Hamiltonian, variational approach

In this paper we present a systematic and general method for developing variational integrators for LiePoisson Hamiltonian systems living in a finite-dimensional space g∗, the dual of Lie algebra associated with a Lie group G . These integrators are essentially different discretized versions of the Lie-Poisson variational principle, or a modified Lie-Poisson variational principle proposed in th...

متن کامل

New Langevin and gradient thermostats for rigid body dynamics.

We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as requ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.00616  شماره 

صفحات  -

تاریخ انتشار 2016